Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 257
Filter
1.
Infect Genet Evol ; 112: 105463, 2023 08.
Article in English | MEDLINE | ID: covidwho-20244841

ABSTRACT

Recent reports on identification of canine coronavirus (CCoV) in humans have emphasized the urgency to strengthen surveillance of animal CoVs. The fact that recombinations between CCoV with feline, porcine CoVs brought about new types of CoVs indicated that more attention should be paid to domestic animals like dogs, cats and pigs, and the CoVs they carried. However, there are about ten kinds of CoVs that infect above animals, and thus representative CoVs with zoonotic potentials were considered in this study. Multiplex RT-PCR against CCoV, Feline coronavirus (FCoV), porcine deltacoronavirus and porcine acute diarrhea syndrome coronavirus was developed to investigate the prevalence of CoVs from domestic dogs in Chengdu, Southwest China. Samples from a total of 117 dogs were collected from a veterinary hospital, and only CCoV (34.2%, 40/117) was detected. Therefore, this study focused on CCoV and its characteristics of S, E, M, N and ORF3abc genes. Compared with CoVs that are capable of infecting humans, CCoV strains showed highest nucleotide identity with the novel canine-feline recombinant detected from humans (CCoV-Hupn-2018). Phylogenetic analysis based on S gene, CCoV strains were not only clustered with CCoV-II strains, but also closely related to FCoV-II strains ZJU1617 and SMU-CD59/2018. As for assembled ORF3abc, E, M, N sequences, CCoV strains had the closest relationship with CCoV-II (B203_GZ_2019, B135_JS_2018 and JS2103). What's more, specific amino acid variations were found, especially in S and N proteins, and some mutations were consistent with FCoV, TGEV strains. Altogether, this study provided a novel insight into the identification, diversification and evolution of CoVs from domestic dogs. It is of top priority to recognize zoonotic potential of CoVs, and continued comprehensive surveillance will help better understand the emergence, spreading, and ecology of animal CoVs.


Subject(s)
Coronavirus Infections , Coronavirus, Canine , Dog Diseases , Animals , Dogs , Cats , Humans , Swine , Coronavirus, Canine/genetics , Coronavirus Infections/epidemiology , Coronavirus Infections/veterinary , Reverse Transcriptase Polymerase Chain Reaction , Phylogeny , Molecular Epidemiology , Mutation , Animals, Domestic , China/epidemiology , Dog Diseases/epidemiology
2.
Viruses ; 15(5)2023 05 10.
Article in English | MEDLINE | ID: covidwho-20241674

ABSTRACT

Dengue virus (DENV) infections have unpredictable clinical outcomes, ranging from asymptomatic or minor febrile illness to severe and fatal disease. The severity of dengue infection is at least partly related to the replacement of circulating DENV serotypes and/or genotypes. To describe clinical profiles of patients and the viral sequence diversity corresponding to non-severe and severe cases, we collected patient samples from 2018 to 2022 at Evercare Hospital Dhaka, Bangladesh. Serotyping of 495 cases and sequencing of 179 cases showed that the dominant serotype of DENV shifted from DENV2 in 2017 and 2018 to DENV3 in 2019. DENV3 persisted as the only representative serotype until 2022. Co-circulation of clades B and C of the DENV2 cosmopolitan genotype in 2017 was replaced by circulation of clade C alone in 2018 with all clones disappearing thereafter. DENV3 genotype I was first detected in 2017 and was the only genotype in circulation until 2022. We observed a high incidence of severe cases in 2019 when the DENV3 genotype I became the only virus in circulation. Phylogenetic analysis revealed clusters of severe cases in several different subclades of DENV3 genotype I. Thus, these serotype and genotype changes in DENV may explain the large dengue outbreaks and increased severity of the disease in 2019.


Subject(s)
Dengue Virus , Dengue , Humans , Dengue Virus/genetics , Dengue/epidemiology , Phylogeny , Bangladesh/epidemiology , Serogroup , Genotype
3.
Vopr Virusol ; 67(6): 496-505, 2023 02 07.
Article in Russian | MEDLINE | ID: covidwho-20240924

ABSTRACT

INTRODUCTION: SARS-CoV-2, a severe acute respiratory illness virus that emerged in China in late 2019, continues to spread rapidly around the world, accumulating mutations and thus causing serious concern. Five virus variants of concern are currently known: Alpha (lineage B.1.1.7), Beta (lineage B.1.351), Gamma (lineage P.1), Delta (lineage B.1.617.2), and Omicron (lineage B.1.1.529). In this study, we conducted a molecular epidemiological analysis of the most prevalent genovariants in Moscow and the region. The aim of the study is to estimate the distribution of various variants of SARS-CoV-2 in Moscow city and the Moscow Region. MATERIALS AND METHODS: 227 SARS-CoV-2 sequences were used for analysis. Isolation of the SARS-CoV-2 virus was performed on Vero E6 cell culture. Sequencing was performed by the Sanger method. Bioinformatic analysis was carried out using software packages: MAFFT, IQ-TREE v1.6.12, jModelTest 2.1.7, Nextstrain, Auspice v2.34. RESULTS: As a result of phylogenetic analysis, we have identified the main variants of the virus circulating in Russia that have been of concern throughout the existence of the pandemic, namely: variant B.1.1.7, which accounted for 30% (9/30), AY.122, which accounted for 16.7% (5/30), BA.1.1 with 20% (6/30) and B.1.1 with 33.3% (10/30). When examining Moscow samples for the presence of mutations in SARS-CoV-2 structural proteins of different genovariants, a significant percentage of the most common substitutions was recorded: S protein D614G (86.7%), P681H/R (63.3%), E protein T9I (20.0%); M protein I82T (30.0%), D3G (20.0%), Q19E (20.0%) and finally N protein R203K/M (90.0%), G204R/P (73.3 %). CONCLUSION: The study of the frequency and impact of mutations, as well as the analysis of the predominant variants of the virus are important for the development and improvement of vaccines for the prevention of COVID-19. Therefore, ongoing molecular epidemiological studies are needed, as these data provide important information about changes in the genome of circulating SARS-CoV-2 variants.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Moscow/epidemiology , COVID-19/epidemiology , Phylogeny
4.
5.
Pathogens ; 12(5)2023 May 07.
Article in English | MEDLINE | ID: covidwho-20237912

ABSTRACT

Porcine deltacoronavirus (PDCoV) is an emerging coronavirus that causes diarrhea in nursing piglets. Since its first outbreak in the United States in 2014, this novel porcine coronavirus has been detected worldwide, including in Korea. However, no PDCoV case has been reported since the last report in 2016 in Korea. In June 2022, the Korean PDCoV strain KPDCoV-2201 was detected on a farm where sows and piglets had black tarry and watery diarrhea, respectively. We isolated the KPDCoV-2201 strain from the intestinal samples of piglets and sequenced the viral genome. Genetically, the full-length genome and spike gene of KPDCoV-2201 shared 96.9-99.2% and 95.8-98.8% nucleotide identity with other global PDCoV strains, respectively. Phylogenetic analysis suggested that KPDCoV-2201 belongs to G1b. Notably, the molecular evolutionary analysis indicated that KPDCoV-2201 evolved from a clade different from that of previously reported Korean PDCoV strains and is closely related to the emergent Peruvian and Taiwanese PDCoV strains. Furthermore, KPDCoV-2201 had one unique and two Taiwanese strain-like amino acid substitutions in the receptor-binding domain of the S1 region. Our findings suggest the possibility of transboundary transmission of the virus and expand our knowledge about the genetic diversity and evolution of PDCoV in Korea.

6.
Vopr Virusol ; 67(6): 465-474, 2023 02 07.
Article in Russian | MEDLINE | ID: covidwho-20236063

ABSTRACT

INTRODUCTION: Bovine coronaviruses (BCoVs) are causative agents of diarrhea, respiratory diseases in calves and winter cow dysentery. The study of genetic diversity of these viruses is topical issue. The purpose of the research is studying the genetic diversity of BCoV isolates circulating among dairy cattle in Siberia. MATERIALS AND METHODS: Specimens used in this study were collected from animals that died or was forcedly slaughtered before the start of the study. The target for amplification were nucleotide sequences of S and N gene regions. RESULTS: Based on the results of RT-PCR testing, virus genome was present in 16.3% of samples from calves with diarrheal syndrome and in 9.9% with respiratory syndrome. The nucleotide sequences of S gene region were determined for 18 isolates, and N gene sequences - for 12 isolates. Based on S gene, isolates were divided into two clades each containing two subclades. First subclade of first clade (European line) included 11 isolates. Second one included classic strains Quebec and Mebus, strains from Europe, USA and Korea, but none of sequences from this study belonged to this subclade. 6 isolates belonged to first subclade of second clade (American-Asian line). Second subclade (mixed line) included one isolate. N gene sequences formed two clades, one of them included two subclades. First subclade included 3 isolates (American-Asian line), and second subclade (mixed) included one isolate. Second clade (mixed) included 8 sequences. No differences in phylogenetic grouping between intestinal and respiratory isolates, as well as according to their geographic origin were identified. CONCLUSION: The studied population of BCoV isolates is heterogeneous. Nucleotide sequence analysis is a useful tool for studying molecular epidemiology of BCoV. It can be beneficial for choice of vaccines to be used in a particular geographic region.


Subject(s)
Betacoronavirus 1 , Cattle Diseases , Coronavirus Infections , Coronavirus, Bovine , Coronavirus , Female , Cattle , Animals , Coronavirus, Bovine/genetics , Coronavirus/genetics , Phylogeny , Coronavirus Infections/epidemiology , Coronavirus Infections/veterinary , Diarrhea/epidemiology , Diarrhea/veterinary , Genetic Variation , Cattle Diseases/epidemiology
7.
International Journal of Infectious Diseases ; 130(Supplement 2):S142-S143, 2023.
Article in English | EMBASE | ID: covidwho-2322311

ABSTRACT

Intro: Canine parvovirus type 2 (PVC-2), Protoparvovirus genus of the Parvoviridae family, is a worldwide distribution virus that affects the Canidae family. In free-living coyotes (Canis latrans), the presence of the PCV-2a, PCV-2b and PCV-2c subtypes of PVC-2 has been reported, but there are no reports of their presence as a cause of clinical damage. The objective of this study is to report the presence of PVC-2c in an outbreak of mild gastroenteritis in three coyote pups detected in northeastern Mexico Methods: During the fall of 2019, in the suburban area of Monterrey, N.L., 3 affected coyote pups were detected with a mild gastroenteric condition consisting of mild diarrhea with loose stools, vomiting, dehydration, loss of appetite, pale mucous membranes, and low weight. Stool samples were tested for Canine Parvovirus (CPV-2), Canine Coronavirus (CCV) or Giardia antigens with a commercial kit. All samples were positive for CPV-2 and these were subsequently analyzed by PCR and sequencing of the CPV-2 VP2 gene. Using bioinformatics, the VP2 gene sequence data obtained were used to establish phylogenetic relationships with homologous sequences reported in coyotes and CPV-2 vaccines. Finding(s): The genetic sequence of VP2 obtained showed a high homology (98.1 to 100%) with CPV-2c. The sequences obtained from the pups showed 100% homology to each other. The phylogenetic tree showed that the sequences reported in coyotes are grouped in different clades and that the sequence of the VP2 gene of CPV-2c from coyote pups is grouped in a different monophyletic group. Conclusion(s): Information suggests that wild coyotes may not only act as asymptomatic reservoir hosts but may also be clinically affected by PVC-2c. It is necessary to carry out studies to know the effects of the genetic subtypes of PVC-2 in the population of coyotes and other wild canids of northeastern Mexico.Copyright © 2023

8.
Annals of Blood ; 6 (no pagination), 2021.
Article in English | EMBASE | ID: covidwho-2327184

ABSTRACT

The A and B oligosaccharide antigens of the ABO blood group system are produced from the common precursor, H substance, by enzymatic reactions catalyzed by A and B glycosyltransferases (AT and BT) encoded by functional A and B alleles at the ABO genetic locus, respectively. In 1990, my research team cloned human A, B, and O allelic cDNAs. We then demonstrated this central dogma of ABO and opened a new era of molecular genetics. We identified four amino acid substitutions between AT and BT and inactivating mutations in the O alleles, clarifying the allelic basis of ABO. We became the first to achieve successful ABO genotyping, discriminating between AA and AO genotypes and between BB and BO, which was impossible using immunohematological/serological methods. We also identified mutations in several subgroup alleles and also in the cis-AB and B(A) alleles that specify the expression of the A and B antigens by single alleles. Later, other scientists interested in the ABO system characterized many additional ABO alleles. However, the situation has changed drastically in the last decade, due to rapid advances in next-generation sequencing (NGS) technology, which has allowed the sequencing of several thousand genes and even the entire genome in individual experiments. Genome sequencing has revealed not only the exome but also transcription/translation regulatory elements. RNA sequencing determines which genes and spliced transcripts are expressed. Because more than 500,000 human genomes have been sequenced and deposited in sequence databases, bioinformaticians can retrieve and analyze this data without generating it. Now, in this era of genomics, we can harness the vast sequence information to unravel the molecular mechanisms responsible for important biological phenomena associated with the ABO polymorphism. Two examples are presented in this review: the delineation of the ABO gene evolution in a variety of species and the association of single nucleotide variant (SNV) sites in the ABO gene with diseases and biological parameters through genome-wide association studies (GWAS).Copyright © Annals of Blood. All rights reserved.

9.
Topics in Antiviral Medicine ; 31(2):113, 2023.
Article in English | EMBASE | ID: covidwho-2320759

ABSTRACT

Background: The COVID-19 pandemic has been striking for three years and, despite the regular arise of new variants, populations are now widely immune and protected from severe symptoms. However, immunocompromised patients still have worse clinical outcomes, higher mortality and rarely develop effective immunity through vaccination or infection. Here, we studied the temporal distribution of infections, viral loads (VL) as well as the viral genetic diversity among an immunocompromised patient cohort, between January 2021 and September 2022. Method(s): Overall, 478 immunocompromised patients (solid organ transplant, HIV positive, cancer, autoimmune disease) and 234 controls (healthcare workers) from Pitie-Salpetriere and Bichat Claude-Bernard University hospitals (Paris, FRANCE) were diagnosed with SARS-CoV-2 infection by RT-qPCR. Whole genome sequencing was performed according to ARTIC protocol on Oxford Nanopore platform. All 712 full viral genomes were used to determine lineages and mapped to Wuhan-Hu-1 reference to produce a maximum likelihood phylogenetic tree (IQTree, 1000 bootstraps). Differences in temporal distributions of infections and VL were assessed using nonparametric statistical tests. Result(s): According to phylogenetic analysis, genomes from SARS-CoV- 2 infecting immunocompromised patients and those infecting healthy individuals are distributed in a similar way. No significant genetic differences can be observed between viral genomes from patients and controls within the different lineages. Temporal distribution of COVID-19 infections were also similar between immunocompromised patients and controls, with the exception of BA.2 variant for which controls were infected earlier (p< 0.001). VL were significantly lower in immunocompromised patients infected with Omicron variants (p=0.04). No differences in VL were observed for Alpha and Delta variants. Conclusion(s): At diagnosis, no intrinsic genetic divergence was observed in virus infecting immunocompromised patients compared to those circulating in the general population. Similarities in temporal distribution of infections between controls and patients suggest that these different groups become infected concomitantly. VL appeared to be lower for Omicron variants in immunocompromised patients. An earlier VL peak of Omicron and a testing of immunocompromised patients hospitalized once severe symptoms have appeared could indicate a delayed testing in these patients, once the replicative phase over. (Figure Presented).

10.
Topics in Antiviral Medicine ; 31(2):367-368, 2023.
Article in English | EMBASE | ID: covidwho-2319946

ABSTRACT

Background: Despite increased social vulnerability and barriers to care, there has been a paucity of data on SARS-CoV-2 incidence among key populations in sub-Saharan Africa. We seek to characterize active infections and define transmission dynamics of SARS-CoV-2 among people who inject drugs (PWID) and their sexual and injecting partners from Nairobi and the coastal region in Kenya. Method(s): This was a nested cross-sectional study of SARS-CoV-2 infection from April to July 2021 within a cohort study of assisted partner services for PWID in Kenya. A total of 1000 PWID and their partners (500 living with and 500 living without HIV) were recruited for SARS-CoV-2 antibody testing, of whom 440 were randomly selected to provide self-collected nasal swabs for real-time PCR testing. Whole genome sequencing (WGS) was completed on a limited subset of samples (N=23) with cycle threshold values 32.0. Phylogenetic tree construction and analysis was performed using the Nextstrain pipeline and compared with publicly available SARS-CoV-2 sequences from GenBank. Result(s): A total of 438 (99.5%) participants provided samples for SARS-CoV-2 PCR testing. Median age was 37 (IQR 32-42);128 (29.2%) were female;and 222 (50.7%) were living with HIV. The overall prevalence of SARS-CoV-2 infection identified by RT-PCR was 86 (19.6%). In univariate analyses, there was no increased relative risk of SARSCoV- 2 infection related to positive HIV status, frequenting an injection den, methadone treatment, unstable housing, report of any high-risk exposure, or having a sexual or injecting partner diagnosed with COVID-19 or who died from COVID-19 or flu-like illness. Eight samples were successfully sequenced via WGS and classified as WHO variants of concern: 3 Delta, 3 Alpha, and 2 Beta. Seven were classified into clades predominantly circulating in Kenya during 2021. Notably, two sequences were identical and matched identically to another Kenyan sequence, which is consistent with, though not indictive of, a transmission linkage. Conclusion(s): Overall, the risk of SARS-CoV-2 infection in this population of PWID and their partners was not significantly associated with risk factors related to injection drug use. At a genomic level, the SARS-CoV-2 strains in this study were consistent with contemporary Kenyan lineages circulating during the time and not unique to PWID. Prevention efforts, therefore, must also focus on marginalized groups for control given the substantial amount of mixing that likely occurs between populations.

11.
J Basic Microbiol ; 63(5): 519-529, 2023 May.
Article in English | MEDLINE | ID: covidwho-2312806

ABSTRACT

Bovine coronavirus (BCoV) is a member of pathogenic Betacoronaviruses that has been circulating for several decades in multiple host species. Given the similarity between BCoV and human coronaviruses, the current study aimed to review the complete genomes of 107 BCoV strains available on the GenBank database, collected between 1983 and 2017 from different countries. The maximum-likelihood based phylogenetic analysis revealed three main BCoV genogroups: GI, GII, and GIII. GI is further divided into nine subgenogroups: GI-a to GI-i. The GI-a to GI-d are restricted to Japan, and GI-e to GI-i to the USA. The evolutionary relationships were also inferred using phylogenetic network analysis, revealing two major distinct networks dominated by viruses identified in the USA and Japan, respectively. The USA strains-dominated Network Cluster includes two sub-branches: France/Germany and Japan/China in addition to the United States, while Japan strains-dominated Network Cluster is limited to Japan. Twelve recombination events were determined, including 11 intragenogroup (GI) and one intergenogroup (GII vs. GI-g). The breakpoints of the recombination events were mainly located in ORF1ab and the spike glycoprotein ORF. Interestingly, 10 of 12 recombination events occurred between Japan strains, one between the USA strains, and one from intercontinental recombination (Japan vs. USA). These findings suggest that geographical characteristics, and population density with closer contact, might significantly impact the BCoV infection and co-infection and boost the emergence of more complex virus lineages.


Subject(s)
Cattle Diseases , Coronavirus Infections , Coronavirus, Bovine , Animals , Cattle , Humans , Phylogeny , Likelihood Functions , Coronavirus Infections/epidemiology , Recombination, Genetic , Cattle Diseases/epidemiology
12.
Front Vet Sci ; 10: 1146648, 2023.
Article in English | MEDLINE | ID: covidwho-2320311

ABSTRACT

Transmissible gastroenteritis virus (TGEV) is a porcine coronavirus that threatens animal health and remains elusive despite years of research efforts. The systematical analysis of all available full-length genomes of TGEVs (a total of 43) and porcine respiratory coronaviruses PRCVs (a total of 7) showed that TGEVs fell into two independent evolutionary phylogenetic clades, GI and GII. Viruses circulating in China (until 2021) clustered with the traditional or attenuated vaccine strains within the same evolutionary clades (GI). In contrast, viruses latterly isolated in the USA fell into GII clade. The viruses circulating in China have a lower similarity with that isolated latterly in the USA all through the viral genome. In addition, at least four potential genomic recombination events were identified, three of which occurred in GI clade and one in GII clade. TGEVs circulating in China are distinct from the viruses latterly isolated in the USA at either genomic nucleotide or antigenic levels. Genomic recombination serves as a factor driving the expansion of TGEV genomic diversity.

13.
Front Vet Sci ; 10: 1137392, 2023.
Article in English | MEDLINE | ID: covidwho-2307752

ABSTRACT

Since 2013, a dengue epidemic has broken out in Yunnan, China and neighboring countries. However, after the COVID-19 pandemic in 2019, the number of dengue cases decreased significantly. In this retrospective study, epidemiological and genetic diversity characterizations of dengue viruses (DENV) isolated in Yunnan between 2017 and 2018 were performed. The results showed that the dengue outbreak in Yunnan from 2017 to 2018 was mainly caused by DENV1 (genotype I and genotype V) and DENV2 (Asia I, Asia II, and Cosmopolitan). Furthermore, correlation analysis indicated a significant positive correlation between the number of imported and local cases (correlation coefficient = 0.936). Multiple sequence alignment and phylogenetic divergence analysis revealed that the local isolates are closely related to the isolates from Myanmar and Laos. Interestingly, recombination analysis found that the DENV1 and DENV2 isolates in this study had widespread intra-serotype recombination. Taken together, the results of the epidemiological investigation imply that the dengue outbreak in Yunnan was primarily due to imported cases. This study provides a new reference for further investigations on the prevalence and molecular epidemiology of DENV in Yunnan, China.

14.
JMIR Form Res ; 7: e39409, 2023 Apr 21.
Article in English | MEDLINE | ID: covidwho-2302523

ABSTRACT

BACKGROUND: In the wake of the SARS-CoV-2 pandemic, scientists have scrambled to collect and analyze SARS-CoV-2 genomic data to inform public health responses to COVID-19 in real time. Open source phylogenetic and data visualization platforms for monitoring SARS-CoV-2 genomic epidemiology have rapidly gained popularity for their ability to illuminate spatial-temporal transmission patterns worldwide. However, the utility of such tools to inform public health decision-making for COVID-19 in real time remains to be explored. OBJECTIVE: The aim of this study is to convene experts in public health, infectious diseases, virology, and bioinformatics-many of whom were actively engaged in the COVID-19 response-to discuss and report on the application of phylodynamic tools to inform pandemic responses. METHODS: In total, 4 focus groups (FGs) occurred between June 2020 and June 2021, covering both the pre- and postvariant strain emergence and vaccination eras of the ongoing COVID-19 crisis. Participants included national and international academic and government researchers, clinicians, public health practitioners, and other stakeholders recruited through purposive and convenience sampling by the study team. Open-ended questions were developed to prompt discussion. FGs I and II concentrated on phylodynamics for the public health practitioner, while FGs III and IV discussed the methodological nuances of phylodynamic inference. Two FGs per topic area to increase data saturation. An iterative, thematic qualitative framework was used for data analysis. RESULTS: We invited 41 experts to the FGs, and 23 (56%) agreed to participate. Across all the FG sessions, 15 (65%) of the participants were female, 17 (74%) were White, and 5 (22%) were Black. Participants were described as molecular epidemiologists (MEs; n=9, 39%), clinician-researchers (n=3, 13%), infectious disease experts (IDs; n=4, 17%), and public health professionals at the local (PHs; n=4, 17%), state (n=2, 9%), and federal (n=1, 4%) levels. They represented multiple countries in Europe, the United States, and the Caribbean. Nine major themes arose from the discussions: (1) translational/implementation science, (2) precision public health, (3) fundamental unknowns, (4) proper scientific communication, (5) methods of epidemiological investigation, (6) sampling bias, (7) interoperability standards, (8) academic/public health partnerships, and (9) resources. Collectively, participants felt that successful uptake of phylodynamic tools to inform the public health response relies on the strength of academic and public health partnerships. They called for interoperability standards in sequence data sharing, urged careful reporting to prevent misinterpretations, imagined that public health responses could be tailored to specific variants, and cited resource issues that would need to be addressed by policy makers in future outbreaks. CONCLUSIONS: This study is the first to detail the viewpoints of public health practitioners and molecular epidemiology experts on the use of viral genomic data to inform the response to the COVID-19 pandemic. The data gathered during this study provide important information from experts to help streamline the functionality and use of phylodynamic tools for pandemic responses.

15.
Eur J Clin Invest ; : e14004, 2023 Apr 10.
Article in English | MEDLINE | ID: covidwho-2290998

ABSTRACT

BACKGROUND: The pandemic of coronavirus disease 2019 (COVID-19) has a broad spectrum of clinical manifestations. The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) undergoes continuous evolution, resulting in the emergence of several variants. Each variant has a different severity and mortality rate. MATERIALS AND METHODS: In this study, 1174 COVID-19 patients were studied for mortality and severity over three SARS-CoV-2 predominating variant periods in 2021 and 2022 in Sulaimani Province, Iraq. In each period, a representative, variant virus was subjected to phylogenetic and molecular and clinical analysis. RESULTS: Phylogenetic analysis revealed three SARS-CoV-2 variants, belonging to: Delta B.1.617.2, Omicron BA.1.17.2, and Omicron BA.5.6. The Delta variants showed more severe symptoms and a lower PCR-Ct value than Omicron variants regardless of gender, and only 4.3% of the cases were asymptomatic. The mortality rate was lower with Omicron (.5% for BA.5.2 and 1.3% for BA.1.17.2) compared with Delta variants (2.5%). The higher mortality rate with Delta variants was in males (2.84%), while that with Omicron BA1.17.2 and BA.5.2 was in females, 1.05% and .0%, respectively. Age group (≥70) years had the highest mortality rate; however, it was (.0%) in the age group (30-49) years with Omicron variants, compared with (.96%) in Delta variants. CONCLUSIONS: There has been a surge in COVID-19 infection in the city due to the predominant lineages of SARS-CoV-2, B.1.617, Omicron BA.1.17.2 and Omicron BA.5.6, respectively. A higher PCR-Ct value and severity of the Delta variant over Omicron BA.1.17.2 and/or BA.5.2 variants were significantly correlated with a higher death rate in the same order.

16.
Int J Mol Sci ; 23(22)2022 Nov 17.
Article in English | MEDLINE | ID: covidwho-2295420

ABSTRACT

MSClustering is an efficient software package for visualizing and analyzing complex networks in Cytoscape. Based on the distance matrix of a network that it takes as input, MSClustering automatically displays the minimum span clustering (MSC) of the network at various characteristic levels. To produce a view of the overall network structure, the app then organizes the multi-level results into an MSC tree. Here, we demonstrate the package's phylogenetic applications in studying the evolutionary relationships of complex systems, including 63 beta coronaviruses and 197 GPCRs. The validity of MSClustering for large systems has been verified by its clustering of 3481 enzymes. Through an experimental comparison, we show that MSClustering outperforms five different state-of-the-art methods in the efficiency and reliability of their clustering.


Subject(s)
Computational Biology , Software , Computational Biology/methods , Phylogeny , Reproducibility of Results , Cluster Analysis
17.
Microbiology Research ; 12(1) (no pagination), 2021.
Article in English | EMBASE | ID: covidwho-2259174

ABSTRACT

The COVID-19 epidemic started in Libya in March 2020 and rapidly spread. To shed some light on the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) strains circulating in Libya, viruses isolated from 10 patients in this country were sequenced, characterized at the genomic level, and compared to genomes isolated in other parts of the world. As nine genomes out of 10 belonged to the SS1 cluster and one to SS4, three datasets were built. One included only African strains and the other two contained internationally representative SS1 and SS4 genomes. Genomic analysis showed that the Libyan strains have some peculiar features in addition to those reported in other world regions. Considering the countries in which the strains are genetically more similar to the Libyan strains, SARS-CoV-2 could have entered Libya from a North African country (possibly Egypt), sub-Saharan Africa (e.g., Ghana, Mali, Nigeria), the Middle East (e.g., Saudi Arabia), or Asia (India, Bangladesh).Copyright © 2021 by the authors. Licensee MDPI, Basel, Switzerland.

18.
Iranian Journal of Veterinary Medicine ; 13(3):251-259, 2023.
Article in English | EMBASE | ID: covidwho-2250867

ABSTRACT

BACKGROUND: Gammacoronaviruses, which are single-stranded, positive-sense RNA viruses, are responsible for a wide variety of existing and emerging diseases in birds. The Gammacoronaviruses primarily infect avian hosts. OBJECTIVE(S): This study aimed to investigate the genetic diversity of Gammacoronaviruses in quail population in Iran. METHOD(S): In the period from 2016 to 2018, samples from 47 quail flocks with or without enteric signs, were collected from four provinces in Iran. RESULT(S): Gammacoronavirus was detected in samples of 4 flocks by using RT-PCR and characterized by N gene sequencing. The isolates formed a distinct group from other Gamma- coronaviruses groups CONCLUSION(S): The finding suggests the existence of a novel Gammacoronavirus circulating in quail farms. The phylogenetic relationship of the isolates concerning different sequences and geographical regions displayed complexity and diversity. The present study is the first detection of Gammacoronavirus in quail farms in Iran. Further studies are required and should include the isolation and experimental studies of Gammacoronaviruses in Iran.Copyright © 2019.

19.
J Biomol Struct Dyn ; : 1-10, 2021 Jul 19.
Article in English | MEDLINE | ID: covidwho-2273461

ABSTRACT

Since the first appearance of a novel coronavirus pneumonia (NCP) caused by a novel human coronavirus, and especially after the infection started its rapid spread over the world causing the COVID-19 (coronavirus disease 2019) pandemics, a very substantial part of the scientific community is engaged in the intensive research dedicated to finding of the potential therapeutics to cure this disease. As repurposing of existing drugs represents the only instant solution for those infected with the virus, we have been working on utilization of the structure-based virtual screening method to find some potential medications. In this study, we screened a library of 646 FDA approved drugs against the receptor-binding domain of the SARS-CoV-2 spike (S) protein and the main protease of this virus. Scoring functions revealed that some of the anticancer drugs (such as Pazopanib, Irinotecan, and Imatinib), antipsychotic drug (Risperidone), and antiviral drug (Raltegravir) have a potential to interact with both targets with high efficiency. Further we performed molecular dynamics simulations to understand the evolution in protein upon interaction with drug. Also, we have performed a phylogenetic analysis of 43 different coronavirus strains infecting 12 different mammalian species.Communicated by Ramaswamy H. Sarma.

20.
Lancet Reg Health West Pac ; 10: 100130, 2021 May.
Article in English | MEDLINE | ID: covidwho-2254259

ABSTRACT

BACKGROUND: Viral genomic surveillance is vital for understanding the transmission of COVID-19. In Hong Kong, breakthrough outbreaks have occurred in July (third wave) and November (fourth wave) 2020. We used whole viral genome analysis to study the characteristics of these waves. METHODS: We analyzed 509 SARS-CoV-2 genomes collected from Hong Kong patients between 22nd January and 29th November, 2020. Phylogenetic and phylodynamic analyses were performed, and were interpreted with epidemiological information. FINDINGS: During the third and fourth waves, diverse SARS-CoV-2 genomes were identified among imported infections. Conversely, local infections were dominated by a single lineage during each wave, with 96.6% (259/268) in the third wave and 100% (73/73) in the fourth wave belonging to B.1.1.63 and B.1.36.27 lineages, respectively. While B.1.1.63 lineage was imported 2 weeks before the beginning of the third wave, B.1.36.27 lineage has circulated in Hong Kong for 2 months prior to the fourth wave. During the fourth wave, 50.7% (37/73) of local infections in November was identical to the viral genome from an imported case in September. Within B.1.1.63 or B.1.36.27 lineage in our cohort, the most common non-synonymous mutations occurred at the helicase (nsp13) gene. INTERPRETATION: Although stringent measures have prevented most imported cases from spreading in Hong Kong, a single lineage with low-level local transmission in October and early November was responsible for the fourth wave. A superspreading event or lower temperature in November may have facilitated the spread of the B.1.36.27 lineage.

SELECTION OF CITATIONS
SEARCH DETAIL